Equitable Coloring and the Maximum Degree
نویسندگان
چکیده
منابع مشابه
Every 4-Colorable Graph With Maximum Degree 4 Has an Equitable 4-Coloring
Chen, Lih, and Wu conjectured that for r ≥ 3, the only connected graphs with maximum degree at most r that are not equitably r-colorable are Kr,r (for odd r) and Kr+1. If true, this would be a joint strengthening of the Hajnal-Szemerédi Theorem and Brooks' Theorem. Chen, Lih, and Wu proved that their conjecture holds for r = 3. In this paper we study properties of the hypothetical minimum count...
متن کاملEquitable List Coloring of Graphs with Bounded Degree
A graph G is equitably k-choosable if for every k-list assignment L there exists an L-coloring of G such that every color class has at most d|G|/ke vertices. We prove results towards the conjecture that every graph with maximum degree at most r is equitably (r+1)choosable. In particular, we con rm the conjecture for r ≤ 7 and show that every graph with maximum degree at most r and at least r ve...
متن کاملAcyclic 6-coloring of graphs with maximum degree 5 and small maximum average degree
A k-colouring of a graph G is a mapping c from the set of vertices of G to the set {1, . . . , k} of colours such that adjacent vertices receive distinct colours. Such a k-colouring is called acyclic, if for every two distinct colours i and j, the subgraph induced by all the edges linking a vertex coloured with i and a vertex coloured with j is acyclic. In other words, every cycle in G has at l...
متن کاملEquitable coloring of random graphs
An equitable coloring of a graph is a proper vertex coloring such that the sizes of any two color classes differ by at most one. The least positive integer k for which there exists an equitable coloring of a graph G with k colors is said to be the equitable chromatic number of G and is denoted by χ=(G). The least positive integer k such that for any k′ ≥ k there exists an equitable coloring of ...
متن کاملPolyhedral results for the Equitable Coloring Problem
In this work we study the polytope associated with a 0/1 integer programming formulation for the Equitable Coloring Problem. We find several families of valid inequalities and derive sufficient conditions in order to be facet-defining inequalities. We also present computational evidence of the effectiveness of including these inequalities as cuts in a Branch & Cut algorithm.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 1994
ISSN: 0195-6698
DOI: 10.1006/eujc.1994.1047